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Abstract: The Sombor index SO(G) has recently introduced in the chemical
graph theory. It is a vertex-degree-based topological index defined as SO(G) =

D weB(G \/dG 24+ dg(v)?, where dg(u) is the degree of a vertex u in a graph
G. In thIS paper we obtain Sombor index of line graph, total graph, semitotal line
graph and semitotal point graph of subdivision graph.
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1. Introduction

A topological index is a kind of molecular descriptor that is computed for the
molecular graph of a chemical compound in the fields of chemical graph theory,
molecular topology, and mathematical chemistry.

In this paper we take into account a simple, connected graph G having n vertices
and m edges. The vertex set and edge set of a graph G are denoted by V(G) and
E(G) respectively. A uv edge is the one that connects vertices u and v. The degree
of a vertex v is the number of edges incident to it, and is denoted by dg(v).

The first and second Zagreb indices of graph G [9] are defined respectively as

M(G)= > lde(u)+de(v)] and MyG)= Y do(u

weE(G) weE(G)

The Zagreb indices were used in the structure property model [8, 11, 12,13]. The
Forgotten topological index of a graph G is defined as [5]

F&) = Y (dalw)®

ueV(G)

The Sombor index of graph G is defined as [6]

= Y Vde(w)? +da(v)?.

weE(G)

Basic results of Sombor index are obtained in [7]. Sombor index of chemical graphs
are obtained in [1, 2]. Extremal values of the Sombor index of unicyclic graphs and
bicyclic graphs are obtained in [3]. Sombor index of directed graphs is obtained
in [4]. Sombor energy of graphs are considered in [15, 16]. For definitions and
terminologies of graphs we refer the books [10, 18]. In this paper we obtain results
for Sombor index of some graph valued functions of subdivision graphs.

Definition 1.1. The subdivision graph S(G) is the graph derived from G by in-
serting a new vertez into each edge of G.

Definition 1.2. The line graph of G is the graph L(G) whose vertex set has a
one-to-one correspondence with the edge set of G and two vertices in L(G) are ad-
jacent whenever the corresponding edges of G are adjacent.

Definition 1.3. The total graph of G, denoted by T(G), is a graph with vertex set
V(T(G)) =V (G)UE(G) and two vertices in T(G) are adjacent if and only if they

are adjacent elements or they are incident elements in G.
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Definition 1.4. [17] The semi-total point graph of G, denoted by To(G), is a graph
with vertez set V(T3(G)) = V(G) U E(G) and two vertices in To(G) are adjacent if
they are adjacent vertices in G or one is vertex and other is an edge, incident to
1t.

Definition 1.5. [17] The semi-total line graph of G, denoted by T1(G), is a graph
with vertez set V(T1(G)) = V(G)U E(G) and two vertices in T1(G) are adjacent if
they are adjacent edges in G or one is vertex and other is an edge, incident to it.

INlustration 1.1. Without loss of generality, referring to the Fig. 1, let e and f
be adjacent edges at v in G. Let € and €’ be the subdivision edges of an edge e in
S(G) and f" and f" be the subdivision edges of an edge f in S(G). Let ue and uy
be the subdivision vertices on edges e and f respectively in S(G).

Degrees of all the vertices in total graph of the subdivision graph is given in [14].

Edge set E(T(S(G))) of the total graph of the subdivision graph can be partitioned
into sets F,, F», E3, B, and FEjs, as

Figure 1: Graph G, S(G), T5(S(G)), T1(S(G)) and T(S(G)).
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E; = {uu, | v € V(G) and wu, is the subdivision vertex in S(G)},

= {ue’ | u € V(G) and €' is the subdivision edge in S(G)},

= {uc€’ | u, is the subdivision vertex and e’ is the subdivision edge in S(G)}
Ey = {e'¢" | ¢ and ¢” are subdivision edges with common end vertex u. in S(G)}
and E5 = {e"f’ | ¢" and f" are subdivision edges in S(G) with common end vertex
v of G}.

Easily we check that, |E1| = |Esy| = |E3| = 2m, |E;| = m and

’EE)‘ _ Z dG<U)<d;(U) _ 1) = —m+ %Ml(G)
veV(Q)

2. Main Results
Theorem 2.1. Let G be a graph with n vertices and m edges. Then SO(T(S(G))) =

250(S(G) + > da(u [\/5dG 2 1 4dg(u) + 4 + /da(u)? + 4dg(u) + 20| +
ueV(G)

Y VB Hdo(w)? +do(v)? + 4(da(u) + do(v)) + L[F(G) + M, (G) — 4m]
weF(G) \/§

Proof. By referring Fig. 1 and by degrees of the vertices in T(S(G)) we have
SO(T(5(G)))

= Y s WP+ drsenv)

weE(T(S(Q)))
- Z \/dT(S< y(w)? + drs \/dT )2 + dr(scy (€)2 +
uuc€F ue €E2
Z \/dT(S(G))( e)? + dr(s(ey (e \/dT )2 + dresay (€")?
uee'€F e e”6E4
+ ) \/dT(S< p(e)? + drscy(f')
6”f’€E'5
= 2 Y Vdgw?+4+ Y da(u)y/bda(u)? + ddg(u) +4
ueV(G) ueV(G)

+ > da(u)\/de(w)? + ddg(u) + 20 + V2 Z ( )2+dc( )
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+ Y VBHde(u)? + da(v)? + 4(de(u) + da(v))

weE(G)
= 250(S(G)+ Y. VB+de(w)? +de(v)? +4(de(u) + da(v))
weE(G)
+ Y do(u [\/561@ 2 1+ 4dg(u) + 4 + /de(u)? + 4dg(u) + 20]
ueV(G)
1
+—F(G) + Mi(G) — 4m]|.
\/5[ (G) + My(G) — 4m]
Theorem 2.2. Let G be a graph with n vertices and m edges. Then,
SO(T ) =2 Z de(u [\/dg 2+ 4+ \/de(u)? + 1+ 5.
ueV (G

Proof. By referring Fig. 1 we see that the edge set E(T5(S(G))) = Ey U Ey U Es.
Therefore

SOM(S@) = > f¢@uaa 2+ drsion (v)

wveE (Ta(S(
= . \/ dry sy (u)? + dn(s(c:))(ue)2 + \/ dry(s(cy) (W) + dry(s(ey (€)?
e €F ue’€E2
+ D \/ dry(s(cy) (ue)? + dry(siay) (€')?
uee’' €63
= Y do(u)V/Ada(w) +1+ch 4dg(u +ZdaV_0
ueV(G) ueV (G ueV (G
2 Y daw) Vel = f]
ueV(G)

Theorem 2.3. Let G be a graph with n vertices and m edges. Then,

SO(T. Z de(u [\/QdG )2 1 ddg(u) + 4 + \/do(w)? + ddg(u) + 8

ueV (G

+ > VBHda(w)? + de(v)® + 4(de(u) + de(v)) +

1
LIR(G) + M (G) — 4.
uweE(G) \/i
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Proof. By referring Fig. 1 we see that the edge set E(T1(S(G))) = EsUE3UELUES.
Therefore, we have SO(T1(S(G)))

> \/ dry(s(e) (W)? + dry(s(e) (v)?
weE(T1(S(G))

= Z \/dT1 )2 =+ dry (s(c)) Z \/dT1 s (ue)® + drysa)(€)?

ue' € Eo uee' €FB3
+ ) \/dT1 s (€)? + dry sy (e”)?
ee"eky
+ D \/ dr, (s (€")? + dry(siay (1)
e f'cEs
_ Z de(u)Vde(W) + 2+ de(w)2+ Y do(u)y/4+ 2+ da(u))?
ueV (G ueV(G)
n Z V2+dew)?+ 2+de(v)? +v2 Y ( )2+dc( )
weE(G) ueV (G
= Y dg(u [\/ng 2 4 Adg(u) + 4+ /de(u) +4dG(u) +8] +
ueV(G)
F(G)+ M (G)—4
S VB Aol + do() + A(da(w) T da(e)) + LA \}( ) —4m]
weER(Q) 2
Theorem 2.4. Let G be a graph with n vertices and m edges. Then
1
SO(L(5(G))) = SO(G) + EWG) — Mi(G)].

Proof. Partition the edge set of line graph of subdivision graph into two sets,
={ef|e~wuand f~wvin S(G) where uv € E(G)}, and

Ey ={ef | e~wand f~wuin S(G) where u € V(G)}. Also, disay(e) = da(u)

[13]. Hence, SO(L(S(G)))

SOL(SG)) = 3\ (duson(e)? + (dusion(£))?

efeE(L(S5(G)))

= Y \/ (drisiay(€)? + (diesy (f))?

efebr
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+ \/(dL(S(G))(e))2 + (disiey (f))?

efekn
= > Ve +[de)?+ Y V{da(w)? + (da(u))?
weE(G) ueV(G)
— SO(G)++?2 ug(:m (d(’g“)) de(u)
1
= SO(G)+E[F(G)—M1(G)]~
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